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Chapter Four 
 

Analysis of single phase  

A.C. Circuits 
 

4.1 Introduction: 

In chapter three the effect of resistance, inductance or capacitance had 

been taken into account alone in each case. In this chapter these 

components will be taken together. In order to limit this introductory 

study, only in those circuits the voltage and current waveforms are 

sinusoidal will be considered.   

 

4.2 Series AC circuits: 

1- RC Series circuits: 
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tan φ=Q/P 

S=P+jQ 

Where S=VI : in AC circuit is called the apparent power and represented 

by the symbol S (Volt-Amp.) 

P=VI Cos φ  : active power or real power  

   =I
2
 R = V

2
/R     (watt) 

Q=VI Sin φ  : reactive power (VAR) 

 

2-  R-L series circuit: 

                                                                                     

 

V =r.m.s value of the applied voltage. 

I = r.m.s value of the circuit current. 

VR= I R 

VL= I XL 
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S=P-jQ=VI 

Q=VI Sinφ = reactive power (VAR). 

 

3- RLC Series Circuits: 

 

 

                                                                                       

 

 

 

 

For leading power factor: 
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Example:  For the circuit shown below, find: 

                                      

 

 

 

 

 

 

 

 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

a-  Z Total 

b- Draw the impedance diagram.  

c-Find C and L 

d- I, VR, VL, and VC 

e- Pav.. 

f- Power factor 

 
 

R=2Ω 

XL=6Ω 

XC=10 Ω 

e=70.7 Sin(377t+30
o
) 



4.3 Parallel AC circuit: 

1- Parallel RL circuit: 

                                                                           

IR=V/R ,    IL=V/XL   ,      I=IR-jIL  
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where Y is the admittance of the above circuit. 
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G: conductance and B: susceptance. 
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2- Parallel RC circuit: 

                                                                              

IR=V/R ,    IC=V/XC   ,     I=IR+jIC 
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where Y is the admittance of the above circuit. 
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3- RLC  circuit: 
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Example:  Find the series element or elements that must be connected 

in series  

with 2Ω resistor to satisfy the following conditions: 

a- Average power to the circuit =300 w. 
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b- Circuit has a lagging power factor. 
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Example: Find the total admittance and impedance of the RLC parallel 

circuit, with (3, 6, 9) Ω respectively and identify the values of 

conductance and susceptance.   
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Example: For the circuit shown below, find I1.  

                                                                          

 

 

 

 

 

 

 

 

Example:  For the circuit given below find C, R and V if the total 

current leads the supply voltage by 30
o
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Example: Determine the power triangles for each branch of the circuit 

shown below:                           
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Example:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Z1=4 30
o 

Z2=5 60
o 

V=20 60
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4.4   Maximum power transfer: 
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Thus to produce maximum power in the load (maximum power 

transfer) the load impedance must be: 
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Example:  For the circuit shown below, calculate the max. power that 

can be transferred to ZL. 
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4.5   Power factor correction: 

Most industrial and domestic electrical loads operate at a required 

fixed a mount of real power P. The power factor thus becomes 

essentially important. 

P=V I Cosφ 

I= load current = 
pfV

P

VCos

P

*



 

From this equation it is clear that for constant P and V, the load 

current I can be reduced through increasing of Cosφ. 

       To correct (or improve) the power factor, without affecting the 

real power in the load impedance ZL, an impedance Z’ is connecting 

across the load impedance. 
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This means that the angle φ1 approaches zero. 

 

 

 

 

    If S’ is negative (S’=-jQ’) then Z’ must be capacitance, where: 

Z’ is a reactive impedance 

(pure L or pure C) 
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V 

S 

S1 

jQ1 

-jQ’ 

=S’ 
jQ 

φ 

φ1 

The complex power of the overall system S1. 
 

S1=S+S’ 
 

    =P+jQ+(-jQ)=P+j(Q+Q’)=P+jQ1  

ZL Z’ 

IL 
I’ 

I1=Line current 

V 



'
'

'
' 2 CV

X

V
Q

C

  
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Example:  A load with 0.8 lagging PF absorbs 60 W from a 100 V, 

60 Hz power line. It is required to correct the power factor to 0.9 lagging. 

Find: 

a)- The original and the final line current. 

b)- The value of the element to be added to achieve the required pf 

correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Example:  For the circuit shown: 

a)- find the overall complex power and pf. 

b)- find the value and nature of the element required to correct the 

overall pf 

 to unity 

c)- what is the percentage reduction in the line current due to this 

correction? 
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250 VA, 

0.5 lag pf 

180 w, 0.8 

leading pf 

200 V 

50 Hz 



                                                                                                                   

Chapter Five 
 

Resonance 
 

5.1 Introduction:  

In the analysis of general a.c. circuit, one case was not completely argued, 

namely that in which the inductive reactance is equal to the capacitive 

reactance. When this occurs, VL=VC and consequently V and I are in 

phase with one another. This is an instance of a condition that is termed 

resonance.     

 

5.2 Series resonance circuit: 

                                                                            

                                                       
Series resonant will occur when  

XL=XC 

ZT=R    which is the minimum value of the impedance. 
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Example:  For the circuit below, find Qs, VC and VL at resonance. 
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5.3 Versus frequency: 
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The total impedance versus frequency curve for the series resonant is: 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Phase plot for the series resonant            ZT,I,pf Vs frequency for the 

series Resonant circuit.                                      Resonant circuit. 
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5.4 Parallel resonant circuit: 
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Example:   In a parallel RLC circuit, R=250 Ω, L= 2 mH, and C=20 μF. 

The circuit is driven by a 0.1 A current source operating at the current 

resonance frequency. Find: 

a)- ωS, Q. 

b)- the voltage across the circuit and the current in each branch. 

 

 

 

 

 

 
CjLj

GYT
 /1

11


  

 

     Cj
Lj

G 



1

 

Vmax 

Inductive Capacitive 

f 
fs 

V  

 R jXL -jXC 
 I 

  V 



 

5.5  Resonance in series-parallel RLC circuit: 
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  Example:  Find the approximate series resonance circuit. 
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Chapter Six 
 

Magnetic Circuit  
 

6.1   Introduction:  

      Electromagnetism is the study of magnetic fields set up by the 

passage of electrical currents through a system of conductors. 

 

6.2   Magnetic Field:  The space surrounding a current carrying 

conductor in which the current effect can be observed is called the 

magnetic field of the conductor. 

The force on the compass needle causing deflect is called the magnetic 

force.   The relation between the direction of magnetic field and 

direction of current can be defined by the right-hand rule. 

 

6.3   Laws of magnetic forces:  

1- Like poles repel each other but unlike poles attract each other. 

2- Force between two magnetic poles is directly proportional to the 

product of their poles strengths and inversely proportional to the 

square of the distance between them. 

2

21

d

mm
F     where m1 and m2 are poles strengths and d is distance 

between the  

                    two poles. 

 2

21

d

mm
kF    where k is constant. 

 

6.4   Magnetic flux and flux density:  

The lines of magnetic field is termed as the magnetic flux. It has the 

symbols “φ” and the unit is (wb) where:  



  1 wb=10
8
 lines. 

The magnetic flux density is the flux that is passing uniformly and 

normally at right angle of any surface of area ‘A’ as shown below: 

 

A
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
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Where: 

B= is the magnetic flux density [wb/m
2
] or [Tesla]. 

φ=magnetic flux [wb]. 

A=Area in [m
2
] normal to the flux. 

If the plane is not taken at right angle to the direction of the field then: 

 

 

         SinBA  

 

Note: if the plane is parallel to the 

direction of the flux, no flux pass through 

the plane. 

 
 

6.5  Force on current – carrying conductor :  

 

F=B l I   [Newton] 

where: 

F : Force in [N]. 

B: Flux density in [wb/m
2
]. 

l : effective length of the conductor [m]. 

I : current passing through the conductor [A]. 

If the angle between the conductor and the field lines is θ then : 
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F=BlI Sin θ  [N] 

 

 

 

 

   

 

 

6.6  Faraday Laws :  

If a conductor is moved through a magnetic field so that it cuts magnetic 

lines of flux, a voltage will be induced across the conductor. 

If a coil of N turns is placed in the region of a changing flux, a voltage 

will be induced across the coil as determined by Faraday’s law: 

       
dt

d
Ne


  

 

6.7  Lenz’s Laws :  

The law states that the direction of induce emf of such that the current 

produced by it sets up a magnetic field opposing the motion of change 

producing it. 

        
dt

d
NinducedEMF


          [volt]. 

Example: A coil of resistance 100Ω is placed in a magnetic field of 1 

mwb. The coil has 100 turns and a galvanometer of 400 Ω resistance is 

connected in series with it. Find the average emf and current of the coil 

moved 1/10 sec from the given field to a field of a 0.2 mwb. 
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6.8   Magnetic field intensity or magnetizing force :  

 Magnetic field intensity at point in a magnetic field is the force acting on 

a unit pole (pole of 1 wb) placed at that point. It has a symbol (H) and 

unit of (N/wb).  

H is a vector quantity. 

 

6.9  Relation between B and H :  

B/H= constant =μ 

The ratio B/H in a material is always constant and is equal to the 

absolute permeability (μ) which is a measure of material conductivity 

for magnetic flux. Greater μ means greater conductivity of flux. The 

air or vacuum is the poorest magnetic medium. 

 μ= μo μr 

 

μ := Absolute permeability of the material. 

μo:=  Absolute permeability of the air or vacuum = 4π*10
-7

 [H/m]  

μr:=  Relative permeability of the material = 1 for air or vacuum. 

 

 

 

 

 

 

 

 

 

  

 

6.10 Reluctance :  

          The resistance for electrical circuit by the equation:  

 

          
A

l
R     [Ω] 

B-H Curve for 

different materials. 

H (At/m) 

B1 

B (wb/m
2
) 

H1 
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3 
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The reluctance of a material which allows magnetic flux lines to pass 

through material is determined by the following equation: 

          A

l
R




   [At/wb] 

where:  

R := the magnetic reluctance. 

 l := the length of the magnetic path. 

A := the cross - sectional area of the magnetic path. 

μ := the permeability. 

 

6.11 Ohm’s law for magnetic circuit:  

  For electric circuit: 

                              
R

V
I   

The Ohm’s law for magnetic circuit: 

                             
R

F
  

where: 

       F := the magneto-motive force. 

       Φ := the flux. 

        R := the reluctance. 

The magneto-motive force is proportional to the product of the number of 

turns around the core and the current through the turns of wire. 

 

 

          F=NI 

 

   

  

 

 

I 
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N 



6.12 Magnetizing force or magnetic field intensity:  

The magnetomotive force per unit length is called the magnetizing force 

(H). 

        
l

NI

l

F
H          (At/m) 

        Hl=NI     (work law) 

 

6.13 Ampere’s circuit law:  

         The similarity between the analysis of electric and magnetic 

circuits: 

 

 Electric circuit Magnetic circuit 

Cause E F 

Effect I Φ 

Opposition R R 

 

 

∑V=0   (Kirchhoff’s voltage law). 

∑F=0   (for magnetic circuit). 

F=NI     (source of mmf). 

F=ΦR    (the mmf drop across a portion of a magnetic circuit). 

F=Hl 

 

Consider the magnetic circuit shown in the Figure constructed from three 

different ferromagnetic materials. 

    

 Applying Ampere’s circuit law: 

 

     ∑F=0 

  NI+ Haclac+ Hcblcb+ Hbalba=0 

 Rise +drop+drop+drop=0 

  NI- Haclac- Hcblcb- Hbalba=0 

b 

a 

c 

N 

Φ 



 

 

6.14 The flux Φ:  

    

Φa= Φb + Φc    (at junction a) 

 

Φb+ Φc = Φa    (at junction b) 

 

Similar to Kirchhoff’s current law in 

electric circuit. 

 

6.15 Series magnetic circuits:  

In series magnetic circuits, same 

Flux flows through each part of 

The circuit. 
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6.16 Leakage flux :  

Let Φi total flux produced in the iron. 

 

       Φg useful flux across the air gap. 
 

 Leakage flux = Φl = Φi- Φg 
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6.17 Parallel magnetic circuit :  

 

               

 

 

 

A parallel magnetic circuit is that one which has more than one path for 

flux. 

 

           Φ1= Φ2+ Φ3 
  

S1:= Reluctance of path EFAB. 

S2:= Reluctance of path BE. 

S3:= Reluctance of path BCDE. 

Total HT=F= Φ1S1+ Φ2S2 = Φ1S1+ Φ3S3 

 

Example:  An iron ring of cross-sectional area 6 cm
2
 is wound with a wire 

of 100 turns. The ring has an air gap of 2 mm. Calculate the magnetizing 

current required  

to produce a flux of 0.1 mwb. The mean length of magnetic path is 30 

cm. the relative permeability of iron is 470. 
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Example:  In the previous example if the flux in the gap is 0.1 mwb and 

the leakage factor =1.25, calculate the magnetizing current. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Example:  The cross section of a simple relay is shown in figure, shown 

together with the characteristic of the yoke and armature material. 

Calculate the ampere-turns required on the coli for a flux density of 0.1 

wb/m
2
 and an airgap of 6.5 cm

2
. 

 

H(AT/m) 0 100 200 300 400 500 600 700 800 900 

B(wb/m
2
) 0 0.4 o.65 0.83 0.95 1.04 1.09 1.12 1.14 1.15 
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6.18 Self inductance :  

           The self inductance of a magnetic circuit can be derived in terms 

of the reluctance as follows: 
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6.19 Self inductance of a long solenoid :  

          A long solenoid is a coil with length l and a diameter d and N turns. 

The field strength is assumed to be uniform within H value. 
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The solenoid is an important winding arrangement. It is found in relays, 

inductors, small transformers, etc. 

N 
l 

Φ 
I 



Example: A solenoid 800mm long and 20mm in diameter is uniformly 

wound with a coil of 1000 turns. Determine the self inductance of the coil 

assuming that it is air-cored. Also determine the flux density within the 

solenoid when the coil current is 1 A. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

6.20 Self inductance of a uniform wound boroid :  

A toroid is a ring as shown in the figure. 

     Apply the work law to a path having 

a radius r and lying within the core. 

At every point on the path, the unit  

pole will experience a force Hr. 

Total work done round closed path 

      =Ampere turns linked. 
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The magnetic field strength decreases as the radius increases. If the toroid 

has a mean radius much greater than its cross-sectional thickness (ro-ri), 

then Hi is approximately equal to Ho. The magnetic field strength is 

assumed uniform and equal to H. 
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Example:  A wooden toroid of mean diameter 400 mm and cross-

sectional area 400 mm
2
 is uniformly wound with a coil of 1000 turns, 

which carries a current of 2 A. 

Determine the self inductance of the coil and the emf induced in it when 

the current is uniformly reduced to zero in 10 msec. 

 

 

 

 

 

 

 



6.21 Mutual inductance : 

          If two circuits are positioned in such a manner that the flux set up 

by one links the other circuit, then that flux which is common to both 

circuits is termed the mutual flux. If the current in the first circuit is 

varied, the mutual flux also varies and  hence  induces  an emf  in the   

second  circuit.   This  effect is  termed  mutual 
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12    ,  where S is the reluctance of the common flux path. 

The flux produced by I2 in coil 2 is Φ2. 
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Therefore, M12=M21=M 

M
2
=M12*M21 

inductance. 

dt

di
Me   

where M= The mutual inductance. 

The flux produced by I1 is Φ1. Part of 

this flux links N2 (k12 Φ1). 
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The coefficient of coupling k has a maximum value of unity when the 

entire self flux of each coil links the other. 

 

Example:  A ferromagnetic ring of cross-sectional 800 mm
2
 and of mean 

radius 170 mm has two windings connected in series, one of 500 turns 

and one of 700 turns. If the relative permeability is 1200, calculate the 

self inductance of each coil and the mutual inductance of each assuming 

that there is no flux leakage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.22 EMF in two series – connected coils : 



                                                                                                   

 

 

If the current is changing at the ratio di/dt, then the total induced emf 

is: 
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di
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dt
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L=L1+L2+2M = the effective inductance of the circuit. 

If the flux Φ2  is in opposite direction to Φ1, then the total flux is Φ1- 

Φ2  

(series opposing). 
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Example: When two coils are connected in series, their effective 

inductance is found to be 10 H. However, when the connections to one 

Φ1 Φ2 

N1 N2 

I 

The flux Φ2 in the second coil (see the  

Figure) is in the same direction of Φ1. 

 The total flux is Φ1+ Φ2 (series adding). 

The two coils can be represented by 

dot notation as follows: 
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coil are reversed, the effective inductance is 6 H. If the coefficient of 

coupling is 0.6, calculate the self inductance of each coil and the mutual 

inductance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

6.23 Hysteresis loop : 



        

 

When coil shown supplied with alternating voltage, the B-H curve will be 

as follows: 

When the magnetic field strength is reduced 

to zero, a flux will remains due to the  

 reorientation of the domains. Reversing  

the field strength will reduce the flux to 

zero (point 3) and then to maximum negative 

(point4). Each cycle of input current 

 will give complete Hysteresis loop. 

 

      The area is a measure of the work that is done in taking the material 

through a cycle of magnetization. This work results in a loss of energy 

termed the hysteresis loss. This loss becomes apparent in the form of 

heat. 

The hysteresis loss can be calculated as follows;  

  Ph=V *f *area of loop 

Or 

Ph=Kh f B
2

m V 

where: 

Ph = Hysteresis loss (w). 

V = Volume of the magnetic material. 

f = frequency. 
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N = steinmetz index (constant depending on the material used =1.6 to 2.5 

Kh = Hysteresis constant depending on the material used 

     = 100 to 200 for silicon steel. 

Bm = maximum flux density. 

 

Example:  A sample of silicon steel has a hysteresis coefficient of 100 

and a corresponding steiwnetz index of 1.6. Calculate the hysteresis 

power loss to 10
6
mm

3
 when the flux is alternating at 50 Hz, such that the 

maximum flux density is 2 T. Find also the area of the loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.24  Eddy current loss : 



If a loop of conducting material is linked by a varying flux, an emf is 

induced in the loop and a circulating current will flow round the loop. 

 

 

 

 

  

 

The eddy current give rise to a power loss in the resistance of the eddy 

current path. This loss is called the eddy current power loss. 

Let Φ=Φm Sin ωt = A Bm Sinωt 

where A is the cross sectional area perpendicular to the direction of the 

field. 
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where R= the effective resistance to the eddy current. 

The eddy current power loss Pe is given by: 
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Therefore, to minimize the loss, only the cross-sectional area “A” and the 

resistivity can be varied. The net area of the core of a magnetic circuit can 

not be reduced since this is determined by the required flux and the 

maximum permissible 

flux density, but the area can be divided into smaller sections. This is 

achieved by making the core of a number of thin sheets called 

laminations which are lightly insulated from one another. This reduces 

the area of each section and hence the induced emf. It is also increases the 

resistance of the eddy current paths since the area through which the 

currents can pass is reduced. Further reduction of eddy current power loss 

can be obtained by using a material of high resistivity.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter Seven 
 

Electrostatics and Capacitance 

 
7.1: Properties of an electric field:  When a current flows at the rate of 

one ampere, the charge that passes through a cross sectional of the 

conductor during a period of one second is one coulomb. The coulomb is 

the unit of electric charge. 

     The space surrounding a charge can be investigated using a 

small charge body. This investigation is similar to that applied to the 

magnetic field surrounding a current carrying conductor. 

 As in the magnetic case, the lines of force can be traced out. These 

lines are again given certain properties: 

1- In an electric field, each line of force will emanate from or 

terminate in a charge. Usually it will lead from a positive charge to 

a negative charge. 

2- The direction of the line is that experienced by a positive charge 

placed at a point in the electric field. It is assumed that the search 

charge has no effect on the field direction. 

3- The lines of force never intersect since the resultant force at any 

point in an electric field can have only one direction. 

   It should be noticed that whilst it is possible to observe the 

electric force acting on a small charged body in principle, it is 

extremely difficult to obtain experimental verification of the field 

distribution and indirect methods have to be used. 

 

   Electric field about an isolated spherical charge.        
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                                                Parallel Plates 
 

 

 

 

 

 

 

 

  

                 Concentric cylinders (cables) 
 

 

 

 

 

 

 

 

7.2 Electric flux and flux density:  The total electric effect of a system 

as described by the lines of electric force is termed the electric flux 

linking the system. The unit of electric flux is the coulomb. 

 Electric Flux Q (C). 

Electric flux density D (C/m
2
) 

  
A

Q
D    

 

7.3 Permittivity: The flux density may be considered to result from the 

electric field strength. For any given value of electric flux strength E, the 

value of the resulting flux density D depends on the medium in which the 

flux is produced. 

The ratio of D to E is termed the absolute permittivity of the medium. 

  

   Absolute permittivity  ε  (Farad/m) 
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Permittivity of the free space =εo   (Farads per meter) (F/m) 

 

  εo =8.854 *10
-12

  (F/m) 

εr = ε / εo 

 

   ε = εo εr  

 

D= εo εr E 

 

7.4 Simple parallel plate capacitor:   

Let the plates be given a charge of Q coulombs hence giving rise to an 

electric flux of Q coulombs and a potential difference of V volts between 

the plates. 

 

D=Q/A 

Q=D*A 

Ed=V 

C=Q/V 

    = D*A/(E d) 

     =D/E * A/d 

 

  D= = εo εr E 

       D/E = = εo εr 

        

          C = = εo εr  A/d 

 

           ε =Cd/A 

 



 

7.1 Charging of capacitor: 

 

                                                                         

 

 

 

 

 

 

 

Potential difference across the resistance=VS 
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where, Im is the initial charging current which is the maximum value. 

 

2- At any instant: 
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where i= charging current at any instant. 

          VC= potential difference across the capacitor at any instant. 
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From (3) and (2): 
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1- At instant t=0 (switching instant) 

the potential difference across the 

capacitor = VC=0 
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Where K is a constant which can be determine from the initial conditions. 

Substituting t=0 and VC=0 in (4): 

 

K=- ln VS  in equation (4): 
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τ= RC = Time constant. 
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7.2 Discharging of capacitor: 
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