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Chapter Four

Analysis of single phase
A.C. Circuits

4.1 Introduction:

In chapter three the effect of resistance, inductance or capacitance had
been taken into account alone in each case. In this chapter these
components will be taken together. In order to limit this introductory
study, only in those circuits the voltage and current waveforms are

sinusoidal will be considered.

4.2 Series AC circuits:

1- RC Series circuits:

Vr
:l
«—
\V Vr Ve \Y; Ve

V=yVZ+v2 | V=V +V, V =V, - jV,

Where Ve=IR , V=l Xc=I/(2xf C)

R
tan 0=V/Vr
z Xc
=JR? + X

tan(p—? Z=R- jX;

VI Sino Q=VI Sing
S=VI(V. (VAR)
=>

VI C0s<p P=VI Cos¢ (watt)

Cos ¢= power factor




tan 0=Q/P
S=P+jQ
Where S=VI : in AC circuit is called the apparent power and represented
by the symbol S (Volt-Amp.)
P=VI Cos ¢ : active power or real power
=I’R=V’R (watt)
Q=VI Sin ¢ : reactive power (VAR)

2- R-L series circuit:

i(1) R L
—  — A
Vs \% Vv
V(D)=Vmsinmt
(p L' | -
VR |

V =r.m.s value of the applied voltage.

| = r.m.s value of the circuit current.

Ve=IR /‘L
V=1 X, i >
R

V= V2 +V? tango:\\%

R

V=V, +jV, Cos ¢=P.F.
Z=R+ X, [Z]=R* + X}
i(t)=1_Sinet

V(t) =V, Sin(at +¢)

P(t)=i(t)*V(t)=1_ Sinat*V_Sin(at + ¢)



2
p =1 [Val,, Sinat*sin(et + ¢) dot
27

VI Coso
>t >V
1%V,
P,=—|—"—"(Cosat-Cos(2ut + ¢)) dwt VI VI Sing
2ry 2
P _Ynln ——Cos¢ = L = Cosgp =VI Cose
T2 RoR
P

Q=VI Sing = reactive power (VAR).

3- RLC Series Circuits:

For lagging power factor :

R L C
0888 |
— —
Vg Vi Ve
&
Vi
V=l
V-Ve=1(X-Xc)
V.-V 0
v >
Ve=IR
2 > >
VR lVC I
For leading power factor:
Ve Vi
| Vr=IR




Example: For the circuit shown below, find:

a- Z Total

b- Draw the impedance diagram.
c-Find Cand L

d- I, Vg, V|, and Ve

e- P.y.

f- Power factor

e=70.7 Sin(377t+30°)



4.3 Parallel AC circuit:
1- Parallel RL circuit:

IR:V/R ) IL:V/XL ) I:IR'jIL

=R 10 = Q)+ (0 =V )+ () =vy

where Y is the admittance of the above circuit.

v-1_c-jB
Z

G: conductance and B: susceptance.

R* X ,R-JX_ _ X (R ny R?X,
R+jX, R-jX_ R*+X? R? + X?
=real + Im ajenary

Z =R/l jX =

2- Parallel RC circuit:

Ir==VIR, I1c=VIXc , I=lgtjlc
=15 +1¢ =w%f+c¥a2=vw%f+g}¥=wv

where Y is the admittance of the above circuit.

v=1_c+js
VA



Z=RIljX. , ly=I*—¢c

3- RLC circuit:

v

Ir I

@ R L C

1=Ir+j (lc-IL)
VoV Vv
Z R ch X,

=Y =G+ j(Be ~By)

-l

¢5=tan1IC a1 Be =B
I G

Example: Find the series element or elements that must be connected
in series
with 2Q resistor to satisfy the following conditions:

a- Average power to the circuit =300 w.



b- Circuit has a lagging power factor.

0™ E=120

Example: Find the total admittance and impedance of the RLC parallel
circuit, with (3, 6, 9) Q respectively and identify the values of

conductance and susceptance.



Example: For the circuit shown below, find ;.

50/30° A <D

Example: For the circuit given below find C, R and V if the total
current leads the supply voltage by 30°.

120 J5Q
8A AN M

>

fe

AN

4 12A

VR
(~0)
\%

8Q



Example: Determine the power triangles for each branch of the circuit

shown below:

Example:

V=20 / 60°

]

]

Z>=5 4 600

Zi=4 / 30°





















4.4 Maximum power transfer:

Z, =R+jX

Z=Ry+jXs

__E _ E
©Z,+Z, R+R +j(X+X,)

| = E
CIR+R)Z (X + X))

=

“~---- 4
Practical voltage

source or Thevenin’s
equivalent.

2R - E’R
(R+R,)*+ j(X +X,)?

P =

P_ is a function of two variables R and X.

For maximum value of P, :

di:o and £=0
dXx oR
oP, —EZR[Z(X + X{)]

X [RTR)Z+(X+X )P
X+ X, =0 X =—X

S



oP, _ E’[{(R+R,)* +(X +X,)*}-R*2(R+R,)] _

oR [(R+R,)*+(X +X,)*T 0

(R+R,)*+(X +X,)> =2R(R+R,)
R?2+2RR, + R’ + (X, + X,)? =2R? + 2RR,
R? = R? R=R,

Thus to produce maximum power in the load (maximum power

transfer) the load impedance must be:
Z =R+ X =R, — JX, :Z:
This means that the load impedance must be the complex conjugate of

the source impedance.
E E E E

TZ.+Z, R +jX,+R.—jX. 2R 2R

E*> FE?

P e
4R~ 4R,

L max

E
=1’R=(=—=)**R
R



Example: For the circuit shown below, calculate the max. power that

can be transferred to Z, .

2 20 3Q a

w
4]
|

N >

(o)

<

Z;
N
I

LA 10/.0°V




4.5 Power factor correction:

Most industrial and domestic electrical loads operate at a required
fixed a mount of real power P. The power factor thus becomes
essentially important.

P=V I Coso

P P

I=load current = =
VCosep V * pf

From this equation it is clear that for constant P and V, the load
current I can be reduced through increasing of Cose.

To correct (or improve) the power factor, without affecting the
real power in the load impedance Z,, an impedance Z’ is connecting

across the load impedance.

,=Line current

I
Ia*

vo =[] [k

7’ is a reactive impedance
(pure L or pure C)

P P

Y Cos ¢, Y
When Coseg; approaches 1

=1+l

This means that the angle ¢, approaches zero.

The complex power of the overall system S;.

S1=S+S°
=P+jQ+(5jQ)=P+j(Q+Q7)=P+jQ

If S’ 1s negative (S’=-jQ’) then Z’ must be capacitance, where:



Vl

_ — V Za)Cl
Q X',
If S” 1s positive (S’=JQ’) then Z’ must be inductance, where:
.V V'
X' oL

Example: A load with 0.8 lagging PF absorbs 60 W froma 100 V,
60 Hz power line. It is required to correct the power factor to 0.9 lagging.
Find:
a)- The original and the final line current.
b)- The value of the element to be added to achieve the required pf

correction.



Example: For the circuit shown:

a)- find the overall complex power and pf.

b)- find the value and nature of the element required to correct the
overall pf

to unity

C)- what is the percentage reduction in the line current due to this

correction?

200V D 250|VA,f
50 Hz ”9 05lagp

-1 180w, 0.8
D leading pf




Chapter Five

Resonance

5.1 Introduction:

In the analysis of general a.c. circuit, one case was not completely argued,

namely that in which the inductive reactance is equal to the capacitive

reactance. When this occurs, V =V and consequently V and | are in

phase with one another. This is an instance of a condition that is termed

resonance.

5.2 Series resonance circuit:

The total impedance of this

L
- . —
circuit at any frequency is:
Zr=R+]X-jXc ~
E=E/(°

Series resonant will occur when
XL:XC

Zt=R which is the minimum value of the impedance.

XL=XC s (,OSLzl/OJSC
a)z e i . = —1
* Lc *JLC
(o1
* 2zJLC

The quality factor Q=X_/R
To find Q at os:

=2 f



QsL/R= (2 f,L)R= jﬁ @2rL)R

1 /L
Qs:_ oy
RVC
v, X.E
Z;
X E
= R at resonance.
X.E
Ve =28
ZT

Ve = Xe E atresonance
R

xc I VL :VC :QSE

Example: For the circuit below, find Qs, V¢ and V, at resonance.

i -j480Q
0 4800 i

|
I\

U

100/ 0° V



5.3 Versus frequency:

ZT :R+ij_jxc :R+j(xL_xC)

1Z,| = JR? + (X - X)?

The total impedance versus frequency curve for the series resonant is:

circuit is inductive,,
leading pf.

circuit is inductive,

I
I
1
1
1
[
1
1
1
1
I
I
1
1
1
1 -
fs1 .-
I
I
1
1
1
1
1
I
I
1
1
1
1
1
I
I

lagging pf.

Lagging pf

v

[
»

f fs
Phase plot for the series resonant Z+,1,pf Vs frequency for the
series Resonant circuit. Resonant circuit.



4 Parallel resonant circuit:

Y; =G+ _1 + _1 |
joL - j1/aC
I V R iIXc ——-iXc
1 ] N
:G+_—+JCOC
JoL
1 . 1
==+ j(@C——) =Y, |£0°
ot i@C-—) =[]
y il 1
Vo Z,
At resonance : —_i + jaC =0
JoL
A
cu§=i : cos=i rad/sec. M
LC JLC Vo
1 1 :
f=—— Hz l
* 2z 4JLC
Ingdctive E Capaciti

The quality factor Q=R / X,

Example: In a parallel RLC circuit, R=250 Q, L= 2 mH, and C=20 pF.
The circuit is driven by a 0.1 A current source operating at the current
resonance frequency. Find:

a)- ws, Q.

b)- the voltage across the circuit and the current in each branch.



5.5 Resonance in series-parallel RLC circuit:
R L ! Awm——ﬁvwﬂ% |
: | R L | R C ;
i =R 1 Cl—yp ! 5
R, iXs
. Yy —»
Y, — Ré D X, <==» 7 —»
Z, —»
Yo=Y
11 1
R, X, R+ jX,
i_j 1 _Rs_jxs
R, "X, RZ+X?
2 2 2 2
RpZRs;XS Xp:RS;XS
R, X .
L A i.e., Q,=Q=
R Q=Q:=Q
R+ X? 2, x2
Ry === E=R+QY) X = oX ()
R, X Q° +1
— 2 . — 2
Rp—RS Q y RS—Rp/Q
Xp=~Xs i.e. L,=Ls or C,=C

Example: Find the approximate series resonance circuit.



T

-1




Example:



Chapter Six

Magnetic Circuit

6.1 Introduction:

Electromagnetism is the study of magnetic fields set up by the

passage of electrical currents through a system of conductors.

6.2_Magnetic_Field:  The space surrounding a current carrying

conductor in which the current effect can be observed is called the
magnetic field of the conductor.

The force on the compass needle causing deflect is called the magnetic
force.  The relation between the direction of magnetic field and

direction of current can be defined by the right-hand rule.

6.3 Laws of magnetic forces:

1- Like poles repel each other but unlike poles attract each other.

2- Force between two magnetic poles is directly proportional to the
product of their poles strengths and inversely proportional to the
square of the distance between them.

ml m2

d 2

between the

Fo

where m; and m, are poles strengths and d is distance

two poles.
ml m2

F=k=

where Kk is constant.

6.4 Magnetic flux and flux density:

The lines of magnetic field is termed as the magnetic flux. It has the

symbols “¢” and the unit is (wb) where:



1 wb=10° lines.
The magnetic flux density is the flux that is passing uniformly and

normally at right angle of any surface of area ‘A’ as shown below:

surface

0]
B = — 2
A [whb/m?]

) A(m?)

> — 90°

Where:
B= is the magnetic flux density [wb/m?] or [Tesla].

¢=magnetic flux [wb].
A=Area in [m’] normal to the flux.

If the plane is not taken at right angle to the direction of the field then:

f Surface

¢ = BASIng A
)

v

o
Note: if the plane is parallel to the

direction of the flux, no flux pass through

the plane.

6.5 Force on current — carrying conductor :

F=B 11 [Newton]

where:

F : Force in [N].

B: Flux density in [wb/m?].

| : effective length of the conductor [m].

| : current passing through the conductor [A].

If the angle between the conductor and the field lines is 0 then :

v

o



F=BII Sin 0 [N]

Force

> A A >

¢ [ >

< —l

N > | S N . > 'S

> >
vy "
Force

6.6 Faraday Laws :

If a conductor is moved through a magnetic field so that it cuts magnetic
lines of flux, a voltage will be induced across the conductor.
If a coil of N turns is placed in the region of a changing flux, a voltage

will be induced across the coil as determined by Faraday’s law:

6.7 Lenz’s Laws :

The law states that the direction of induce emf of such that the current
produced by it sets up a magnetic field opposing the motion of change

producing it.
: de
EMF induced = —-N —
at [volt].

Example: A coil of resistance 100L is placed in a magnetic field of 1
mwb. The coil has 100 turns and a galvanometer of 400 € resistance is
connected in series with it. Find the average emf and current of the coll
moved 1/10 sec from the given field to a field of a 0.2 mwb.



6.8 Magnetic field intensity or magnetizing force :

Magnetic field intensity at point in a magnetic field is the force acting on
a unit pole (pole of 1 wb) placed at that point. It has a symbol (H) and
unit of (N/wb).

H is a vector quantity.

6.9 Relation between B and H :

B/H= constant =1

The ratio B/H in a material is always constant and is equal to the
absolute permeability (i) which is a measure of material conductivity
for magnetic flux. Greater u means greater conductivity of flux. The

air or vacuum is the poorest magnetic medium.

H= Ho Hy

u = Absolute permeability of the material.
;= Absolute permeability of the air or vacuum = 41*10” [H/m]

u-= Relative permeability of the material = 1 for air or vacuum.

B (wb/m?)

A

B-H Curve for
different materials.

B: [~

H (At/m)
H-

6.10 Reluctance :

The resistance for electrical circuit by the equation:

I
R=p—
P 10



The reluctance of a material which allows magnetic flux lines to pass

through material is determined by the following equation:

|
R= ﬁ [At/wb]

where:

R :=the magnetic reluctance.

| .= the length of the magnetic path.

A ;= the cross - sectional area of the magnetic path.

u = the permeability.

6.11 Ohm’s law for magnetic circuit:

For electric circuit:
V

R

The Ohm’s law for magnetic circuit:
E
¢=—
R

where:

F := the magneto-motive force.

® := the flux.

R := the reluctance.
The magneto-motive force is proportional to the product of the number of
turns around the core and the current through the turns of wire.

S
|

4




6.12 Magnetizing force or magnetic field intensity:

The magnetomotive force per unit length is called the magnetizing force

(H).
H-F_NI
I

HI=NI

(At/m)

(work law)

6.13 Ampere’s circuit law:

The similarity between the analysis of electric and magnetic

circuits:
Electric circuit | Magnetic circuit
Cause E F
Effect I ()
Opposition R R

>'V=0 (Kirchhoff’s voltage law).

> F=0 (for magnetic circuit).

F=NI  (source of mmf).

F=0OR (the mmf drop across a portion of a magnetic circuit).
F=HI

Consider the magnetic circuit shown in the Figure constructed from three

different ferromagnetic materials.

Applying Ampere’s circuit law:

$F=0 — 1%

NI+ Haclac+ chlcb+ Hbalba:O

Rise +drop+drop+drop=0
NI- Haclac' chlcb' Hbalba=0



6.14 The flux ®:

®,= d,+ O, (at junction a)
O+ O, =D, (atjunction b)

Similar to Kirchhoff’s current law in

electric circuit.

6.15 Series magnetic circuits:

In series magnetic circuits, same
Flux flows through each part of
The circuit.

RT:R1+R2+R3+Rg

Total mmf = ® Ry

Total mmf=—2h 4+ 9l 4

il

i m—

Apopty  Aptoit,  Agpiy s

_Bl , B, Bl

ll+ 3+

Bg Ig

/Uo:url /uo:UrZ :Uo/ur3 :uoﬂrg

= H1 |1 +H2 |2 +H3 |3 +Hg Ig

=(AT); + (AT), +(AT)3 +(AT),

6.16 Leakage flux:

Let ®@; total flux produced in the iron.

@, useful flux across the air gap.

Leakage flux = @) = @;- g




total flux _ ¢,

Leakage coefficient A = usefulflux y

g

6.17 Parallel magnetic circuit :

2 v s
S — B O
' S, Ss - 0 : Pl
@, —N| | |
A B = — !
S D Erommmmmme- B

A parallel magnetic circuit is that one which has more than one path for
flux.

(1)1: (D2+ (D3

S::= Reluctance of path EFAB.

S,:= Reluctance of path BE.

Sz:= Reluctance of path BCDE.

Total HT=F= ®;S;+ ®,S, = ®;S;+ @3S,

Example: An iron ring of cross-sectional area 6 cm? is wound with a wire
of 100 turns. The ring has an air gap of 2 mm. Calculate the magnetizing
current required

to produce a flux of 0.1 mwb. The mean length of magnetic path is 30

cm. the relative permeability of iron is 470.




Example: In the previous example if the flux in the gap is 0.1 mwb and
the leakage factor =1.25, calculate the magnetizing current.

Example: The cross section of a simple relay is shown in figure, shown
together with the characteristic of the yoke and armature material.
Calculate the ampere-turns required on the coli for a flux density of 0.1
wb/m? and an airgap of 6.5 cm®.

H(AT/m) |0 | 100 | 200 |300 |400 |500 |600 |700 |800 |900
B(wb/m”) [0 |0.4 [0.65 [0.83 |0.95 |1.04 [1.09 [1.12 |1.14 | 1.15
Yoke

il




6.18 Self inductance :

The self inductance of a magnetic circuit can be derived in terms

of the reluctance as follows:

NI

B= /uo:urH = HHy T

NIA

¢=BA=,LIO,Ler (1)

e-NIP_dNG |

di _ dLi

dt  dt dt dt
Ng=Li | L:NT¢ L@

From (1) in (2):

L =$uo#r ¥= N *—ﬂ(’frA
N2
L

6.19 Self inductance of a long solenoid :

A long solenoid is a coil with length | and a diameter d and N turns.

The field strength is assumed to be uniform within H value.

_M ——
o
NI | N
B_/uo:urH /uo:urT
- —
NIA

¢:BA:luo:urT

Ng N NIA N?
L: :Tﬂoﬂr—:—

The solenoid is an important winding arrangement. It is found in relays,

inductors, small transformers, etc.



Example: A solenoid 800mm long and 20mm in diameter is uniformly
wound with a coil of 1000 turns. Determine the self inductance of the coil
assuming that it is air-cored. Also determine the flux density within the

solenoid when the coil current is 1 A.

6.20 Self inductance of a uniform wound boroid :

A toroid is a ring as shown in the figure.
Apply the work law to a path having

a radius r and lying within the core.

At every point on the path, the unit

pole will experience a force H..

Total work done round closed path

=Ampere turns linked.
H,I=NI
2 r H=NI



N

H =
2

r

At the inner edge, where r=r;,

N
27 ri

At the inner edge, where r=r,,

H, = NI
2710

The magnetic field strength decreases as the radius increases. If the toroid
has a mean radius much greater than its cross-sectional thickness (r,-r;),
then H; is approximately equal to H,. The magnetic field strength is

assumed uniform and equal to H.

H = NI where r,,=the main radius.

2rr,,

NI
2rr

av

B=po pr H = po

NI
2rr

av

O=BA =pou, A

LN os ot AN
I 27 r,, S

Example: A wooden toroid of mean diameter 400 mm and cross-
sectional area 400 mm? is uniformly wound with a coil of 1000 turns,
which carries a current of 2 A.

Determine the self inductance of the coil and the emf induced in it when

the current is uniformly reduced to zero in 10 msec.



6.21 Mutual inductance :

If two circuits are positioned in such a manner that the flux set up
by one links the other circuit, then that flux which is common to both
circuits is termed the mutual flux. If the current in the first circuit is
varied, the mutual flux also varies and hence induces an emf in the

second circuit. This effectis termed mutual

inductance. St v A SR
- Y Y
di e A A -
e=M— N N,
dt
Als

where M= The mutual inductance.
The flux produced by I is ®,. Part of
this flux links N, (k12 (D]_)

Nl¢l

I,

L =

M — k12N2¢l

=~

=

)
=

M
I, S
Nl N2
S
The flux produced by I, in coil 2 is .

My, = , Where S is the reluctance of the common flux path.

L2 — N2 ¢2

IZ
k12 ¢l Nl — Nl NZ
S

M21:

I2
Therefore, M1,=M,;=M
I\/|2=|\/|12"°|\/|21



— k12N2¢1 *klZ AN, = k..k N, $N,
- 12721

I, I, I, I,
= k12k21 |-1L2 =k? L1L2

M =k(LL,)"* (H)

The coefficient of coupling k has a maximum value of unity when the

entire self flux of each coil links the other.

Example: A ferromagnetic ring of cross-sectional 800 mm?* and of mean
radius 170 mm has two windings connected in series, one of 500 turns
and one of 700 turns. If the relative permeability is 1200, calculate the
self inductance of each coil and the mutual inductance of each assuming

that there is no flux leakage.

6.22 EMEF in two series — connected coils :




The flux @, in the second coil (see the

Figure) is in the same direction of ®;.

The total flux is @1+ @, (series adding).
The two coils can be represented by

dot notation as follows:

If the current is changing at the ratio di/dt, then the total induced emf
IS:
e:L1ﬂ+L2ﬂ+M ﬂ+Mﬂ
dt dt dt dt
di di
=(L+L,+2M)—=L —
L+t Vot dt
L=L,+L,+2M = the effective inductance of the circuit.
If the flux ®, i1s in opposite direction to @;, then the total flux is @;-
0%

(series opposing).

M M
L/—\ |_2 . . L/—\_ |_2
Ny N> Ny N>
Al
e B By i
dt dt dt dt
di di
= +L, -2M)—=L —
(L +L, )OIt ot

L=L1+ L2-2M

Example: When two coils are connected in series, their effective
inductance is found to be 10 H. However, when the connections to one



coil are reversed, the effective inductance is 6 H. If the coefficient of
coupling is 0.6, calculate the self inductance of each coil and the mutual

inductance.

6.23 Hysteresis loop :




V(1)

When coil shown supplied with alternating voltage, the B-H curve will be

as follows:

When the magnetic field strength is reduced
to zero, a flux will remains due to the
reorientation of the domains. Reversing

the field strength will reduce the flux to

B-

B (wb/m?)

A

A

zero (point 3) and then to maximum negative
(point4). Each cycle of input current

will give complete Hysteresis loop.

The area is a measure of the work that is done in taking the material

through a cycle of magnetization. This work results in a loss of energy

termed the hysteresis loss. This loss becomes apparent in the form of

heat.

The hysteresis loss can be calculated as follows;
Pn=V *f *area of loop

Or

P.=Ky f B’ V

where:

P, = Hysteresis loss (w).

V = Volume of the magnetic material.

f = frequency.

v



N = steinmetz index (constant depending on the material used =1.6 to 2.5
Ky, = Hysteresis constant depending on the material used
= 100 to 200 for silicon steel.

Bm = maximum flux density.

Example: A sample of silicon steel has a hysteresis coefficient of 100
and a corresponding steiwnetz index of 1.6. Calculate the hysteresis
power loss to 10°mm?® when the flux is alternating at 50 Hz, such that the

maximum flux density is 2 T. Find also the area of the loop.

6.24 Eddy current loss :




If a loop of conducting material is linked by a varying flux, an emf is

induced in the loop and a circulating current will flow round the loop.

0]

Laminations

The eddy current give rise to a power loss in the resistance of the eddy
current path. This loss is called the eddy current power loss.

Let ®=®d,, Sin ot = A B, Sinot

where A is the cross sectional area perpendicular to the direction of the
field.

dg

ea—
dt

d(AB, Sinat)
eqg————
dt

eawAB, Cosat

o AB,

Ea ;
V2R

o AB, } —__m
2R V2R

|l

where R= the effective resistance to the eddy current.
The eddy current power loss P, is given by:
P=I°R
P u A*B?Z f?
R
Since R=p /A ; Rap



2n2 2 K,A’B? f?
PeaA B, f : P, =
P R

Therefore, to minimize the loss, only the cross-sectional area “A” and the
resistivity can be varied. The net area of the core of a magnetic circuit can
not be reduced since this is determined by the required flux and the
maximum permissible

flux density, but the area can be divided into smaller sections. This is
achieved by making the core of a number of thin sheets called
laminations which are lightly insulated from one another. This reduces
the area of each section and hence the induced emf. It is also increases the
resistance of the eddy current paths since the area through which the
currents can pass is reduced. Further reduction of eddy current power loss

can be obtained by using a material of high resistivity.



Chapter Seven
Electrostatics and Capacitance

7.1: Properties of an electric field: When a current flows at the rate of

one ampere, the charge that passes through a cross sectional of the
conductor during a period of one second is one coulomb. The coulomb is
the unit of electric charge.

The space surrounding a charge can be investigated using a
small charge body. This investigation is similar to that applied to the
magnetic field surrounding a current carrying conductor.

As in the magnetic case, the lines of force can be traced out. These
lines are again given certain properties:

1- In an electric field, each line of force will emanate from or
terminate in a charge. Usually it will lead from a positive charge to
a negative charge.

2- The direction of the line is that experienced by a positive charge
placed at a point in the electric field. It is assumed that the search
charge has no effect on the field direction.

3- The lines of force never intersect since the resultant force at any
point in an electric field can have only one direction.

It should be noticed that whilst it is possible to observe the
electric force acting on a small charged body in principle, it is
extremely difficult to obtain experimental verification of the field

distribution and indirect methods have to be used.

Electric field about an isolated spherical charge.

e
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Concentric cylinders (cables)

7.2 Electric flux and flux density: The total electric effect of a system

as described by the lines of electric force is termed the electric flux
linking the system. The unit of electric flux is the coulomb.
Electric Flux Q (C).

Electric flux density D (C/m?)

p=2

A

7.3 Permittivity: The flux density may be considered to result from the

electric field strength. For any given value of electric flux strength E, the
value of the resulting flux density D depends on the medium in which the
flux is produced.

The ratio of D to E is termed the absolute permittivity of the medium.

Absolute permittivity & (Farad/m)



D
— =g
E
Permittivity of the free space =¢, (Farads per meter) (F/m)

£, =8.854 *10™"* (F/m)

e=¢c/¢g
£E=¢ &
D=¢,¢ E

7.4 Simple parallel plate capacitor:

Let the plates be given a charge of Q coulombs hence giving rise to an

electric flux of Q coulombs and a potential difference of V volts between

the plates.
D=Q/A
Q=D*A
Ed=V
C=Q/V
= D*A/(E d)
=D/E * A/d
==gerkE
DIE==¢,¢

==g, g Ald

e =Cd/A



7.1 Charqging of capacitor:

Ve

)15

)|

Vs

1- At instant t=0 (switching instant)
the potential difference across the

capacitor = V=0

Potential difference across the resistance=Vs

=25 (1)

where, |, is the initial charging current which is the maximum value.

2- At any instant:

YV =0

Vo=v.+iR  ...(2)

where i= charging current at any instant.
V= potential difference across the capacitor at any instant.

dv
h=Cy -0

From (3) and (2):
dv

V. =v. +RC—=
S C dt

dvg

Vs —v. =RC it



f dv, Iolt

= +
Vo-V. JRC
t

“In(V, -V )=—+K ... (4

Vs ~Ve) = oo (4)

Where K is a constant which can be determine from the initial conditions.
Substituting t=0 and V=0 in (4):

K=-In Vs in equation (4): V()
Vs A
t . TTTTTT T s
—In -V.)=——1nV -
(Vs c) RC nvs .
0.693Ve| """ 77 >~
t |
—In(Vy —=V.)+InV, =— :
(VS C) S RC ! R
T t
In(—s_y= L
V,-V.” RC R
e VATV
VS :et/RC
Vs =V, Vs Cc —| V¢
-t/RC
Ve =Vs(1-e ) ... (5
V-V, V-V (@1-e R0
= - iV
R R A
I.=Vs/R
vV \
j =S g t/RC
R
0.31m
- ~t/RC >
1=1,e ... (6) . A

7= RC = Time constant.



7.2 Discharging of capacitor:

OZVR+VC

0=i R +V¢

Ielvc L dt

V. RC

InV, = L+ K
RC
K=In Vs

t
InVC == —E + InVS

V
|n_C — _L
V, RC
Ve e
VS

i=C dVC :_\ﬁe—t/RC
dt R
i = I e—t/RC

att=0 V=V

Vs

AL

o

0O

t=0

(8)
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